If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+20=180
We move all terms to the left:
20x^2+20-(180)=0
We add all the numbers together, and all the variables
20x^2-160=0
a = 20; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·20·(-160)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*20}=\frac{0-80\sqrt{2}}{40} =-\frac{80\sqrt{2}}{40} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*20}=\frac{0+80\sqrt{2}}{40} =\frac{80\sqrt{2}}{40} =2\sqrt{2} $
| 0.3(n-5=0.4-0-0.2 | | 25x=1,35 | | 85+(70-x)+(95-2x)=180 | | 8x^2-100=180 | | x-(-15)=7 | | 85+(70-x)+(95-x)=180 | | 3x²+2=-190 | | 49^x=7x^2-15 | | 3x-6=5x+22 | | P(x)=-18x^2-48x | | 1/2(2m+10)=5+m | | w+148=180 | | d=7.5 | | 12+x5=7x+3 | | 15(y-4)-2(y-9)+5(y-6)=0 | | 40X+25y=580 | | 13x-21-2=27x+12-5x-2x | | (3/4)g=-12 | | 2m–15=–5 | | x+96=85 | | -8-x=-8 | | 5v-12=14 | | 4(a=1) | | 20x+120=80 | | x+90=148 | | 40+(6x+2)=180 | | 1/2(x-5)+2/4x=2-3/4x | | a+(16)=-32 | | 10+5=x | | (k+1)/3-k/5=3 | | 43+(2x+7)=180 | | 8.1b=65.8 |